Строение головного мозга человека

Диагностика вторичного злокачественного новообразования головного мозга и мозговых оболочек

  • Исследование ликвора (увеличение белка, повышенный цитоз, атипичные клетки).
  • ЭЭГ (эпилептиформная активность).
  • Офтальмоскопия (застойные диски зрительных нервов).
  • Рентгенография или компьютерная томография грудной клетки, УЗИ/КТ органов брюшной полости, ФГДС, колоноскопия (первичная опухоль).

Компьютерная/магнитно-резонансная томография головного мозга (множественные метастазы).

 

Гистология опухоли (структура опухоли).

Дифференциальный диагноз:

  • Первичные опухоли головного мозга.
  • Паранеопластические синдромы, метаболические нарушения, обусловленные опухолью (гиперкальцемическая энцефалопатия).
  • Сосудистые заболевания центральной нервной системы, инфекционное поражение головного мозга.

Литература

  • Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. — М., 1988.
  • Davidson’s Principles and Practice of Medicine (англ.) / Colledge; Walker, Brian R.; Ralston, Stuart H.; Ralston. — 21st. — Edinburgh: Churchill Livingstone/Elsevier, 2010. — ISBN 978-0-7020-3085-7.
  • John. Guyton and Hall Textbook of Medical Physiology (англ.). — 12th. — Philadelphia, PA: Saunders/Elsevier, 2011. — ISBN 978-1-4160-4574-8.
  • William J. Human Embryology (неопр.). — 3rd. — Philadelphia, PA: Churchill Livingstone (англ.)русск., 2001. — ISBN 978-0-443-06583-5.
  • Bogart, Bruce Ian; Victoria. Elsevier’s Integrated Anatomy and Embryology (англ.). — Philadelphia, PA: Elsevier Saunders, 2007. — ISBN 978-1-4160-3165-9.
  • G.; Richards, C. Human Physiology: The Basis of Medicine (англ.). — 3rd. — Oxford: Oxford University Press, 2006. — ISBN 978-0-19-856878-0.
  • Dale. Neuroscience (неопр.). — 5th. — Sunderland, MA: Sinauer associates, 2012. — ISBN 978-0-87893-695-3.
  • Larry. Fundamental Neuroscience (неопр.). — Waltham, MA: Elsevier, 2013. — ISBN 978-0-12-385-870-2.
  • Gray’s Anatomy: The Anatomical Basis of Clinical Practice (англ.) / Susan. — 40th. — London: Churchill Livingstone (англ.)русск., 2008. — ISBN 978-0-8089-2371-8.

Промежуточный мозг

Специфика строения головного мозга сказывается на структуре его основных отделов. К примеру, промежуточный мозг также состоит из двух основных частей: вентральной и дорсальной. Дорсальный отдел включает в себя эпиталамус, таламус, метаталамус, а вентральная – гипоталамус. В структуре промежуточной зоны принято различать эпифиз и эпиталамус, которые регулируют приспособление организма к перемене биологического ритма.

Таламус является одной из важнейших частей, потому что он необходим человеку для обработки и регуляции различных внешних раздражителей и возможности приспосабливаться к изменяющимся условиям окружающей среды. Основное предназначение – сбор и анализ разных чувственных восприятий (за исключением обоняния), передача соответствующих импульсов в большие гемисферы.

Учитывая особенности строения и функции головного мозга, стоит отметить гипоталамус. Это специальный отдельный подкорковый центр, полностью сосредоточенный на работе с различными вегетативными функциями организма человека. Воздействие отдела на внутренние органы и системы осуществляется с помощью ЦНС и желез внутренней секреции. Гипоталамус выполняет также следующие характерные функции:

  • создание и поддержка режимов сна и бодрствования в повседневной жизни.
  • терморегуляция (поддержка нормальной температуры тела);
  • регулирование сердечного ритма, дыхания, давления;
  • контроль работы потовых желез;
  • регулирование перистальтики кишечника.

Также гипоталамус обеспечивает начальную реакцию человека на стресс, несет ответственность за сексуальное поведение, поэтому его можно охарактеризовать в качестве одного из наиболее важных отделов. При совместной работе с гипофизом гипоталамус оказывает стимулирующее воздействие на формирование гормонов, помогающих нам адаптировать организм к стрессовой ситуации. Тесно связан с работой эндокринной системы.

Гипофиз имеет сравнительно малые размеры (примерно с семечко подсолнуха), но отвечает за продукцию огромного количества гормонов, в том числе за синтез половых гормонов у мужчин и женщин. Располагается за носовой полостью, обеспечивает нормальный обмен веществ, контролирует функционирование щитовидной, половой желез, надпочечников.

Эмбриональное развитие

Реконструкция периферических нервов эмбриона человека размером 10,2 мм. Промежуточный мозг отмечен слева.

Промежуточный мозг, или диэнцефалон, является одним из пяти вторичных мозговых пузырей, формирующихся в процессе эмбрионального развития головного мозга хордовых животных, а именно — вторым по счёту, начиная от рострального (головного) конца эмбриона. Он формируется из задней части переднего (самого первого с головного конца) первичного мозгового пузыря (прозэнцефалона). Из передней же части этого первичного мозгового пузыря образуется конечный мозг (телэнцефалон).

Раннее развитие мозга

На определённой стадии эмбрионального развития (у эмбриона человека это третья неделя) в одном из участков эктодермы (наружного зародышевого листка), на будущем головном конце эмбриона, начинает образовываться так называемая первичная нервная бляшка (англ. neural plaque) — место, где клетки эктодермы начинают отличаться от соседних, и дифференцироваться в так называемую нейроэктодерму, или нейроэпителий. Разрастаясь в диаметре как за счёт интенсивного деления клеток нейроэктодермы, так и за счёт вовлечения соседних клеток в дифференцировку по нейроэктодермальному типу, первичная нервная бляшка быстро превращается в первичную нервную пластинку (neural plate). Затем концы нервной пластинки начинают загибаться внутрь эмбриона, «утаскивая» за собой нервную пластинку с поверхности головного конца эмбриона внутрь. Этот процесс называется первичной нейруляцией. В результате нейруляции формируется первичная нервная трубка (neural tube). Она быстро вытягивается вдоль нотохорды — эмбриональной структуры, указывающей клеткам зародыша ось двусторонней (билатеральной) симметрии. Впоследствии латеральные концы первичной нервной трубки (не до конца сомкнувшиеся углы нервной пластинки) срастаются, отверстия на ростральном и каудальном концах первичной нервной трубки (нейропоры) закрываются. Этот процесс называется вторичной нейруляцией. Нервная трубка с уже закрывшимися нейропорами и сросшимися латеральными концами называется вторичной нервной трубкой. Нотохорда служит организатором и дирижёром на ранних стадиях эмбрионального развития ЦНС, и прообразом будущей хорды у низших хордовых или будущего позвоночника у позвоночных животных. На головном конце нервной трубки формируется так называемое «головное утолщение» — прообраз будущего головного мозга. Полость внутри нервной трубки формирует прообраз будущего центрального канала спинного мозга.

Стадия пяти вторичных мозговых пузырей

На этой стадии два из трёх первичных мозговых пузырей — самый передний, передний мозг (прозэнцефалон) и самый задний, ромбовидный мозг (ромбэнцефалон) подразделяются каждый на два вторичных мозговых пузыря. Передний мозг подразделяется на конечный мозг (телэнцефалон) и промежуточный мозг (диэнцефалон). Ромбовидный же мозг подразделяется на задний мозг (метэнцефалон) и продолговатый мозг (миелэнцефалон). Средний же первичный мозговой пузырь (средний мозг, или мезэнцефалон) на два вторичных мозговых пузыря не подразделяется, и переходит в эту стадию без изменений.

Из зародышевого конечного мозга впоследствии образуются большие полушария головного мозга, в частности кора больших полушарий, подкорковое белое вещество и базальные ядра. Из зародышевого среднего мозга образуются крыша мозга и в частности четверохолмие, ножки мозга, покрышка среднего мозга и входящие в неё структуры, такие, как чёрная субстанция и красные ядра. Из зародышевого заднего мозга образуются варолиев мост и мозжечок. Дальнейшая же дифференцировка зародышевого промежуточного мозга описывается ниже, в отдельном разделе.

Дальнейшая дифференцировка зародышевого промежуточного мозга

Первичный мозговой пузырь Вторичные мозговые пузыри Первичные прозомеры Вторичные прозомеры Дальнейшая прозомеризация
Прозэнцефалон (P) Телэнцефалон (T) T T1
Псевдопрозомера T2
Диэнцефалон (D) D D1
D2 Ростральный парэнцефалон
Каудальный парэнцефалон
Синэнцефалон

Симптомы

Вcтречаемость(насколько часто симптом проявляется при данном заболевании)
Выраженная головная боль, распространяющаяся на всю голову 70%
Сонливость днем 70%
Рассеянность 60%
Приступы судорог с потерей сознания или без (судороги, судорожные припадки, судорожный синдром, конвульсия) 50%
Рвота разного характера, в том числе неукротимая 50%
Снижение массы тела (истощение, похудение, худоба, снижение веса, уменьшение веса) 50%
Тошнота 50%
Головокружение 35%
Двоение в глазах (диплопия) 30%
Сниженное настроение (плохое настроение) 30%
Общая слабость (утомляемость, усталость, слабость организма) 20%
Снижение памяти (ухудшение памяти, плохая память, нарушения памяти, забывчивость) 20%
Затруднение речи (расстройство речи, нарушение речи, проблемы с речью) 15%
Нарушение походки, трудно уточнить (абазия) 15%
Нарушение координации движений 10%
Преходящее нарушение речи (отсутствие или затруднение речи в течение суток) 10%
Мурашки по руке 5%

Клетки мозга

Клетки мозга включают нейроны (клетки, генерирующие и передающие нервные импульсы) и глиальные клетки, выполняющие важные дополнительные функции. Можно считать, что нейроны являются паренхимой мозга, а глиальные клетки — стромой. Различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Коммуникация между нейронами происходит посредством синаптической передачи. Каждый нейрон имеет длинный отросток, называемый аксоном, по которому он передает импульсы другим нейронам. Аксон разветвляется и в месте контакта с другими нейронами образует синапсы — на теле нейронов и дендритах (коротких отростках). Значительно реже встречаются аксо-аксональные и дендро-дендритические синапсы. Таким образом, один нейрон принимает сигналы от многих нейронов и, в свою очередь, посылает импульсы ко многим другим.

В большинстве синапсов передача сигнала осуществляется химическим путём — посредством нейромедиаторов. Медиаторы действуют на постсинаптические клетки, связываясь с мембранными рецепторами, для которых они являются специфическими лигандами. Рецепторы могут быть лиганд-зависимыми ионными каналами, их называют ещё ионотропными рецепторами, или могут быть связаны с системами внутриклеточных вторичных посредников (такие рецепторы называют метаботропными). Токи ионотропных рецепторов непосредственно изменяют заряд клеточной мембраны, что ведёт к её возбуждению или торможению. Примерами ионотропных рецепторов могут служить рецепторы к ГАМК (тормозной, представляет собой хлоридный канал), или глутамату (возбуждающий, натриевый канал). Примеры метаботропных рецепторов — мускариновый рецептор к ацетилхолину, рецепторы к норадреналину, эндорфинам, серотонину. Поскольку действие ионотропных рецепторов непосредственно ведёт к торможению или возбуждению, их эффекты развиваются быстрее, чем в случае метаботропных рецепторов (1—2 миллисекунды против 50 миллисекунд — нескольких минут).

Форма и размеры нейронов головного мозга очень разнообразны, в каждом его отделе — разные типы клеток. Различают принципиальные нейроны, аксоны которых передают импульсы другим отделам, и интернейроны, осуществляющие коммуникацию внутри каждого отдела. Примерами принципиальных нейронов являются пирамидные клетки коры больших полушарий и клетки Пуркинье мозжечка. Примерами интернейронов являются корзиночные клетки коры.

Активность нейронов в некоторых отделах головного мозга может модулироваться также гормонами.

В результате совместных исследований, проведённых в 2006 году, учёные из университетов Окленда (Новая Зеландия) и Гётеборга (Швеция) выяснили, что благодаря деятельности стволовых клеток человеческий мозг способен воспроизводить новые нейроны. Исследователи обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны.
Стволовые клетки, находящиеся в мозге, перестают делиться, происходит реактивация некоторых участков хромосом, начинают формироваться специфические для нейронов структуры и соединения. С этого момента клетку можно считать полноценным нейроном.
Известны две области активного прироста нейронов. Одна из них — зона памяти. В другую входит зона мозга, ответственная за движения. Этим объясняется частичное и полное восстановление со временем соответствующих функций после повреждения данного участка мозга.

Действие нейромедиаторов.

Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго «посредника», например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ – пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану.

Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины – небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры

Это семейство нейромедиаторов подавляет субъективное восприятие боли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector