Этилен

Источники

? в ? Алкены
Этилен (С 2 Н 4)? Пропилен (С 3 Н 6)? Бутен (С 4 Н 8)? Пентен (С 5 Н 10)? Гексена (С 6 Н 12)? Гептен (С 7 Н 14)? Октен (С 8 Н 16)? Нонен (С 9 Н 18)
? в ? Фитогормоны
Абсцизовая кислота ? Ауксины ? Цитокинины ? Этилен ? Гиббереллины
Брасиностероиды ? Флориген ? Жасмонаты ? Каррикины ? Пептидные гормоны растений ? Полиамины ? Салициловая кислота ? Стриголактоны
? в ? Углеводороды
Насыщенные
Алканы Метан ? Этан ? Пропан ? Бутан ? Пентан ? Гексан ? Гептан ? Октан ? Нонана ? Декан…
Ненасыщенные с двойной связью
Алкены Этен ? Пропилен ? Бутен ? Пентен ? гексена ? Гептен ? Октен ? Нонен ? Децена
Диены Пропадиена ? Бутадиен ? Пентадиен ? Гексадиен
Ненасыщенные с тройной связью
Алкины Етин ? Пропин ? Бутин ? Пентин ? Гексин ? Гептин ? Октин ? Нонино ? Децин
Циклические
Циклоалканы Циклопропан ? Циклобутан ? Циклопентан ? Циклогексан ? Циклогептан ? Циклооктан
Арены Толуол ? Бензол ? Мезитилен ? Дюрен ? Етилбезнол ? пропилбензола
Полициклические Нафталин ? Азулен ? Сапоталин ? аценафтена ? Аценафтален ? Антрацел ? Фенантрен ? Флюорен ? бензантрацен ? Пирен ? Хризен
Анулены Циклобутадиен ? Циклооктатетраен ? Циклотетрадекагептен ? Циклооктадеканонен
Анулины Арин

Ацетилен и его гомологи

Ацетилен – это непредельный углеводород, который содержит тройную связь, состоящую из одной δ-связи и двух π-связей.

1) первый представитель ряда ацетилена – бесцветный газ.

Особенности бесцветного газа:

а) немного растворим в воде;

б) его молекулярная формула С2Н2;

2) в молекуле ацетилена еще на два атома водорода меньше, чем в молекуле этилена;

3) π-связь уступает по прочности основной δ-связи, поэтому и по месту π-связей могут проходить реакции окисления и присоединения.

Структурная формула ацетилена: НС≡СН.

1) тройная связь в молекуле ацетилена означает, что атомы углерода в ней соединены тремя парами электронов;

2) исследования строения молекулы ацетилена показывают, что атомы углерода и водорода в молекуле ацетилена расположены на одной прямой;

3) молекула ацетилена имеет линейное строение;

4) атомы углерода соединены между собой одной δ-связью и двумя π-связями.

Особенности строения молекулы ацетилена:

1) в такой молекуле каждый атом углерода соединен δ-связями только с двумя другими атомами (атом углерода и атом водорода) и в гибридизации здесь участвуют лишь два электронных облака – одного s-электрона и одного р-электрона.

Это случай -гибридизации.

Суть состоит в том, что два гибридных облака, которые образуются в виде несимметричных объемных восьмерок, стремятся максимально удалиться друг от друга и устанавливают связи с другими атомами во взаимно противоположных направлениях под углом 180°;

2) облака двух других р-электронов не участвуют в гибридизации.

Они сохраняют форму симметричных объемных восьмерок и при боковом перекрывании с подобными облаками другого углеродного атома образуют две π-связи.

1) подобно метану и этилену, ацетилен начинает собой гомологический ряд;

2) это ряд ацетиленовых углеводородов с одной тройной связью между атомами углерода в молекуле;

3) согласно систематической номенклатуре название таких углеводородов образуются путем замены суффикса – ан соответствующих предельных углеводородов на – ин;

4) как и этиленовые углеводороды, атомы углерода нумеруются начиная с того конца, к которому ближе кратная (тройная) связь:

Особенности изомерии: а) обусловлена разветвлением углеродного скелета; б) характерное положение тройной связи; в) помогает в получении и использовании ацетилена в различных сферах.

Этилен (этен), формула, газ, характеристики:

Этилен (этен) –  органическое вещество класса алкенов, состоящий из двух атомов углерода и четырех атомов водорода. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Химическая формула этилена C2H4, рациональная формула H2CCH2, структурная формула CH2=CH2. Изомеров не имеет.

Строение молекулы:

Этилен – бесцветный газ, без вкуса, со слабым запахом. Легче воздуха.

Этилен является фитогормоном, т.е. низкомолекулярным органическим веществом, вырабатываемым растениями и имеющим регуляторные функции. Он образуется в тканях самого растения и выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов), распускание бутонов (процесс цветения), старение и опадание листьев и цветков, участие в реакции растений на биотический и абиотический стресс, коммуникации между разными органами растений и между растениями в популяции.

Пожаро- и взрывоопасен.

Плохо растворяется в воде. Зато хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Этилен — самое производимое органическое соединение в мире.

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Водород, содержащийся в молекулах показывает кислотные свойства. То есть они довольно легко отрываются от молекулы в виде протонов. Ацетилен в состоянии обесцвечивает воду содержащую бром и раствор «марганцовки».

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Примеры решения задач

Задание Эквимолекулярная смесь ацетилена и формальдегида полностью реагирует с 69,6 г Ag2O, растворенного в аммиаке. Определите состав исходной смеси.
Решение Запишем уравнения реакций, указанных в условии задачи:

Рассчитаем количество вещества оксида серебра (I):

n(Ag2O) = 69,6 / 232 = 0,3 моль.

По уравнению (2) количество вещества формальдегида будет равно 0,1 моль. По условию задачи смесь эквимолекулярна, следовательно, ацетилена тоже будет 0,1 моль.

Найдем массы веществ, составляющих смесь:

M(HC≡CH) = 26 г/моль;

M(H-C(O)H) = 30 г/моль;

m(HC≡CH) = 0,1 × 26 = 2,6 г;

m(H-C(O)H) = 0,1 × 30 = 3 г.

Ответ Масса ацетилена равна 2,6 г, формальдегида – 3 г.

Задание При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.
Решение При пропускании смеси пропана и ацетилена через склянку с бромной водой происходит поглощение ацетилена. Запишем уравнение химической реакции, соответствующее этому процессу:

Таким образом, значение, на которое увеличилась масса склянки (1,3 г) представляет собой массу ацетилена. Найдем количество вещества ацетилена (молярная масса – 26 г/моль):

Запишем уравнение реакции сгоранияацетилена:

Согласно уравнению реакции, в неё вступило 2 моль ацетилена, однако, известно, что 0,05 моль из этого количества поглотилось бромной водой. Т.е. выделилось:

Найдем общее количество оксида углерода (IV):

Запишем уравнение реакции сгорания пропана:

Учитывая, что в реакции сгорания ацетилена выделилось 0,1 моль оксида углерода (IV), количество вещества оксида углерода (IV), выделившееся в ходе сгорания пропана равно:

0,625 — 0,1 = 0,525 моль СО2.

Найдем количество вещества пропана, вступившего в реакцию горения. Согласно уравнению реакции n(CO2) : n(С3Н8) = 3 : 1, т.е.

Вычислим массу пропана (молярная масса 44 г/моль):

Тогда, общая масса смеси углеводородов составит:

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

Галогенирование

(электрофильное присоединение) — взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

CH 2 = CH 2 + Br 2 = Br-CH 2 -CH 2 Br.

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

CH 2 = CH 2 + Cl 2 → CH 2 = CH-Cl + HCl.

Гидрогалогенирование

— взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

CH 2 = CH 2 + HCl → CH 3 -CH 2 -Cl.

Гидратация

— взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

CH 2 = CH 2 + H 2 О → CH 3 -CH 2 -ОН.

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты
(1), реакции гидрокси-
и алкоксимеркурирования
(2, 3) (получение ртутьорганических соединений) и гидроборирование
(4):

CH 2 = CH 2 + HClO → CH 2 (OH)-CH 2 -Cl (1);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + H 2 O → CH 2 (OH)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (2);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + R-OH → R-CH 2 (OCH 3)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (3);

CH 2 = CH 2 + BH 3 → CH 3 -CH 2 -BH 2 (4).

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

2 ON-CH = CH 2 + HCN → 2 ON-CH 2 -CH 2 -CN.

В ходе реакций окисления
этилена возможно образование различных продуктов, причем состав определяется условиями проведения окисления. Так, при окислении этилена в мягких условиях
(окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомного спирта — этиленгликоля:

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH.

При жестком окислении
этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление

этилена кислородом
при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O.

При восстановлении
этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3 .

Этилен вступает в реакцию полимеризации
. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот
(катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n -.

Примечания

  1. Devanney Michael T.  (англ.) (недоступная ссылка). SRI Consulting (September 2009).
  2.  (англ.) (недоступная ссылка). WP Report. SRI Consulting (January 2010).
  3.  (недоступная ссылка). Дата обращения 21 января 2007.
  4. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. — 2-е изд. — М.: Высшая школа, 1993. — С. 345. — 447 с. — ISBN 5-06-002965-4.
  5. В. Ш. Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978
  6. Лутова Л.А. Генетика развития растений / ред. С.Г. Инге-Вечтомов. — 2-е изд.. — Санкт-Петербург: Н-Л, 2010. — С. 432.
  7. Нелюбов Д. Н. О горизонтальной нутации у Pisum sativum и некоторых других растений (рус.) // Труды Санкт-Петербургского Общества Естествознания : журнал. — 1901. — Т. 31, № 1., также Beihefte zum «Bot. Centralblatt», т. Х, 1901
  8. Crocker W, Hitchcock AE, Zimmerman PW. (1935) «Similarities in the effects of ethlyene and the plant auxins». Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene

Физиологическое действие

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и не ядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности). Погибнуть человеку в воздухе с высокой концентрацией метана можно только от недостатка кислорода в воздухе. Так, при содержании в воздухе 25—30 % метана появляются первые признаки удушья (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, характерные для горной болезни.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому случаи гибели людей от удушья при вдыхания смеси метана с воздухом весьма редки.

Первая помощь при тяжёлом удушье: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазосердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за очень слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м³.

Химические свойства алкинов.

Химические свойства алкинов объясняет наличие тройной связи в молекуле алкина. Типичная реакция для алкинов – реакция присоединения, которая протекает в 2 стадии. На первой происходит присоединение и образование двойной связи, а на второй – присоединение к двойной связи. Реакция у алкинов протекает медленнее, чем и алкенов, т.к. электронная плотность тройной связи «размазана» более компактно, чем у алкенов, и поэтому менее доступна для реагентов.

1. Галогенирование. Галогены присоединяются к алкинам в 2 стадии. Например,

А суммарно:

Алкины также как алкены обесцвечивают бромную воду, поэтому эта реакция является качественной и для алкинов.

2. Гидрогалогенирование. Галогенводороды присоединяются к тройной связи несколько тружднее, чем к двойной. Для ускорения (активации) процесса используют сильную кислоту Льюиса – AlCl3. Из ацетилена при таких условиях модно получить винилхлорид, который идет на производства полимера – поливинилхлорида, имеющего важнейшее значение в промышлености:
 

.

Если же галогенводород в избытке, то реакция (особенно у несимметричных алкинов) идет по правилу Марковникова:

3. Гидратация (присоединение воды). Реакция протекает только в присутствии солей ртути (II) в качестве катализатора:

На 1ой стадии образуется непредельный спирт, в котором гидроксигруппа находится у атома углерода, образующего двойную связь. Такие спирты называются виниловыми или фенолами.

Отличительная черта таких спиртов – неустойчивость. Они изомеризуются в более стабильные карбонильные соединения (альдегиды и кетоны) вследствие переноса протона от ОН-группы к углероду при двойной связи. При этом π-связь рвется (между атомами углерода), и образуется новая π-связь между атомомами углерода и атомом кислорода. Такая изомеризация происходит из-за большей плотности двойной связи С=О по сравнению с С=С.

Только ацетилен превращается в альдегид, его гомологи — в кетоны. Реакция протекает по правила Марковникова:

Эта реакция носит названия – реакции Кучерова.

4. Те алкины, которые имеют концевую тройную связь, могут отщеплять протон под действием сильных кислотных реагентов. Такой процесс обусловлен сильной поляризацией связи .

Причиной поляризации служит сильная электроотрицательность атома углерода в sp-гибридизации, поэтому алкины могут образовывать соли – ацетилениды:

Ацетилениды меди и серебра легко образуются и выпадают в осадок (при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди). Эти реакции являются качественными на концевую тройную связь:

Полученные соли легко разлагаются под действием HCl, в результате выделяется исходный алкин:

Поэтому алкины легко выделить из смеси других углеводородоров.

5. Полимеризация. При участии катализаторов алкины могут реагировать друг с другом, причем в зависимости от условий, могут образовываться различные продукты. Например, под воздействием хлорида меди (I) и хлорида аммония:

Винилацетилен (полученное соединение) присоединяет хлороводород, образуя хлорпрен, который служит сырьем для получения синтетического каучука:

6. Если ацетилен пропускать через уголь при 600 ºС, получают ароматическое соединение – бензол. Из гомологов ацетилена, получают гомологи бензола:

7. Реакция окисления и восстановления. Алкины легко окисляются перманганатом калия. Раствор обесцвечивается, т.к. в исходном соединении есть тройная связь. При окислении происходит расщепление тройной связи с образованием карбоновой кислоты:

В присутствие металлических катализаторов происходит восстановление водородом:

Схема применения этилена

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации — это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен – это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт), окись этилена (антифриз, полиэфирные волокна и пленки), ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и синтетического каучука. Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

5. Применение

В современной промышленности этилен применяется достаточно широко для синтеза этилового спирта и производства важных полимерных материалов (полиэтилен и др.)., А также для синтеза других органических веществ. Очень интересна свойство этилена ускорять созревание многих огородных и садовых плодов (помидоров, дынь, груш, лимонов и т.п.). Используя это, плоды можно транспортировать еще зелеными, а затем доводить их до спелого состояния уже на месте потребления, вводя в воздух складских помещений небольшие количества этилена.

Из этилена производят хлористый винил и поливинилхлорид, бутадиен и синтетические каучуки, оксид этилена и полимеры на его основе, этиленгликоль и т.д..

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector